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Abstract 

     In this paper, a well-known mathematical model of electric power transmission line under 

steady state conditions is considered. From this model, the mathematical expressions that describe 

the current travelling and refracted waves along a power transmission line have been developed 

taking as starting point the end of the line. 

     We use the fore-mentioned mathematical expressions and the data of a typical electric 

transmission line to calculate how the current travelling and refracted waves vary. The results are 

also graphed in order to have an optical view of how the current travelling and refracted waves 

behave. Finally, the results are analysed and the relative conclusions are drawn. 
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List of Symbols 

   R   = long-wise omhic resistance of power transmission line (under sinusoidal voltage) 

            per unit length of line (Ω/km) 

   L    = long-wise inductance of power transmission line (under sinusoidal voltage) 

            per unit length of line (H/km) 

   C   = transversal capacitance of power transmission line (under sinusoidal voltage) 
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            per unit length of line (F/km) 

   G   = transversal conductance of power transmission line (under sinusoidal voltage) 

            per unit length of line (S/km) 

    l    = length of power transmission line (km) 

    z   = R+jωL = long-wise complex impedance of power transmission line  

            per unit length of line (Ω/km) 

    y   = G+jωC = transversal complex conductance of power transmission line  

            per unit length of line (S/km) 

    Z   = z.l = total long-wise complex impedance of power transmission line (Ω) 

    Y   = y.l = total transversal complex conductance of power transmission line (S) 

    VS  = complex line to earth voltage at the beginning of power transmission line, 

            Sending voltage (V) 

    VR = complex line to earth voltage at the end of power transmission line, 

            Receiving voltage (V) 

    IS   = complex phase current at the beginning of power transmission line, 

            Sending current (A) 

    IR  = complex phase current at the end of power transmission line, 

            Receiving current (A) 

    γ   =   = α+jβ = transmission co-efficient of power transmission line (km-1) 

    α   =  reduction co-efficient of power transmission line (neper/km) 

    β   =  phase co-efficient of power transmission line (rad/km) 

    zC  =    = characteristic impedance of power transmission line (Ω) 

    ejφ =  cosφ +jsinφ = Euler’s equation 

    λ   =    = wave length of power transmission line (km) 

    υ   =  wave transmission velocity along the power transmission line (km/sec) 

    τ    =  wave travelling time in order to cover the length of power transmission line (sec) 

    Δ   = electric phase (angle) of power transmission line (rad) 

        = electric phase (angle) of power transmission line per unit length of line (rad/km) 

    Itrav(x) = current travelling wave as a function of distance x (A) 

    Irefr(x)  = current refracted wave as a function of distance x (A) 

    ρI(x) =   = current refraction co-efficient as a function of distance x 
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    φ(x) = electric phase(angle) of respective complex quantity as function of distance x (°) 

 

1. Introduction 

     Most people think of the voltage as an element that when they put it on, it is applied 

immediately. They cannot imagine that the voltage and the respective current that is generated are 

waves (electromagnetic waves) that travel and refract with almost the speed of light. This 

understanding is due to the length of line and the inability that people have to perceive the very 

small time intervals (psecs, μsecs, msecs depending on the line length) that the waves need to 

cover these distances. 

     In this paper, the length under consideration is that of a power transmission line of an electric 

power system [1-14], a length of some hundred kilometers. The equivalent electric circuit of an 

electric power transmission line under steady state conditions is drawn and the respective 

differential equations are extracted from it using as independent variable the distance x from either 

the rears of the line. The above mathematical model already exists in the literature and can easily 

be found [1-6]. 

     Solving the differential equations, the mathematical expressions describing the current 

travelling and refracted waves are obtained (section 2). The proof that the above currents are the 

travelling and refracted wave respectively is the mathematical expressions themselves. They are 

the mathematical expressions of a travelling and refracted wave respectively. 

     As far as I know and search in the literature, I could not find calculation and graphical 

representation of the current travelling and refracted waves along an electric power transmission 

line. Thus, in this paper, the above mathematical expressions are tested on a typical electric power 

transmission line and the results are presented in section 3. Furthermore, in section 3, the above 

results are graphed in order to have an optical image of how the current travelling and refracted 

waves along the line behave. Finally, in section 4, a discussion is developed, the results are 

studied, analysed and in section 5, the respective conclusions are drawn. 

 

2. Development and analysis of the mathematical modelling of      

    current travelling and refracted waves 

     In figure 1, the electric equivalent representation of power transmission line under steady state 

conditions and using divided elements has been drawn. 

     where z dx = the infinitesimal long-wise complex impedance of dx 

                y dx = the infinitesimal transversal complex conductance of dx 
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     From the infinitesimal element dx, the following equations are drawn : 

         1st law of Kirchhoff   :    [I(x)+dI(x)] = I(x) + dI(x) 

         2nd law of Kirchhoff  :    [V(x)+dV(x)] = V(x) + dV(x) 

         Voltage drop on element z dx  :  dV(x) = [I(x)+dI(x)] zdx = 

                                                                         I(x) zdx   = I(x) z          (1) 

         Voltage drop on element y dx  :  dI(x)  = V(x) ydx   = V(x) y        (2) 

 

 

     Figure 1. Electric equivalent representation of electric power transmission line 

 

     Differentiating eqn 1 and replacing it into eqn 2, we get : 

                      = yz V(x)                                                                       (3) 

     Differentiating eqn 2 and replacing it into eqn 1, we also get : 

                      = yz I(x)                                                                         (4) 

     From equations (3) and (4), V(x) and I(x) are described by the same differential equations. The 

above implies that V(x) and I(x) are described by similar mathematical functions. 

    We take as initial conditions : 

y dx 

  
           V(x)                         VR 

  

    VS              V(x)+dV(x) 

  

dx                                x 

  

                                                dV(x) 

                                                

            IS                                z dx    I(x)+dI(x)   I(x)                              IR    

 

                                                                 dI(x) 

 



 
 

5 
 

                                        V(x=0) =  VR                                                           (5) 

                                and   I(x=0)  =  IR                                                            (6) 

i.e. we take as x=0 the end of electric power transmission line 

     Then, from equations (3), (4), (5) and (6), we extract the following mathematical expressions of 

current travelling and refracted wave respectively : 

                                        Itrav(x) =     eγx                                               (7) 

                                        Irefr(x) = -  e-γx                                               (8) 

     The above equations (7) and (8) are nothing else but the mathematical expressions of a wave. 

     Then, the current refraction co-efficient ρI(x) can be set as a function of distance x. The voltage 

refraction co-efficient is defined as :    ρI(x) =                              (9) 

 

3. Simulation, calculation and graphical presentation of  

    current travelling and refracted waves 

     We consider a typical electric power transmission line with the following parameters : 

                R = 0.107 Ω/km                 L = 1.362 mH/km 

                G = 0  S/km                       C = 0.0085 μF/km 

                f = 50 Hz                            l = 360 km 

                VR = 115470  V          IR = 360.844  A 

      Then using the list of symbols and the analysis of section 2, we can calculate the other 

complex parameters of the above line in polar and/or cartesian form : 

 

                γ = 1.085x10-3 82.98  km-1 = (0.1326x10-3 + j 1.07687x10-3) km-1 

                    =  321.886  3.092  A 

                -   = 43.079  -23.767  A 

                zC = 406.41 -7.02  Ω 

                γ = 1.085x10-3 82.98  km-1 = (0.1326x10-3 + j 1.07687x10-3) km-1 

                α = 0.1326x10-3 neper/km              β = 1.07687x10-3 rad/km 
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                λ = 5834.674 km 

                υ = 291733.696 km/sec                  τ = 1.234 msecs 

                Δ = 22.212                                     Δ/l = 0.0617 /km 

      Then, equations (7), (8) and (9) using the above parameters become : 

             Itrav(x) = 321.886  3.092  e(0.1326x10-3 + j 1.07687x10-3)x      A                                   (10) 

             Irefr(x) = 43.079  -23.767  e-(0.1326x10-3 + j 1.07687x10-3)x     A                                   (11) 

              ρI (x)   =                               (12) 

 

      Using equations (10), (11) and (12) and taking step Δx=10km, we calculate the values of 

current travelling and refracted waves as well as current refraction co-efficient and the results are 

presented in table 1. Since the currents are vectors, the results are complex numbers and are given 

in polar form ie. in current magnitude(Amps) and current phase( ) representation. The current 

refraction co-efficient ρI(x) is a pure complex number since is derived from the division of the 

current waves and is also given in table 1 in polar form ie. in magnitude(pure real number) and 

phase( ) form. 

 

 
α/α 

 

x 
(km) 

Itrav(x) 
(Amps) 

φItrav(x) 
(°) 

Irefr(x) 
(Amps) 

φIrefr(x) 
(°) 

 
ρI(x) 

 

φρI(x) 
(°) 

1 0 321.8865 3.091922 43.07951 -23.7671 0.1338345 -26.8591 

2 10 322.3137 3.709069 43.02241 -24.3843 0.1334799 -28.0934 

3 20 322.7415 4.326216 42.96538 -25.0014 0.1331263 -29.3277 

4 30 323.1699 4.943362 42.90843 -25.6186 0.1327736 -30.5619 

5 40 323.5988 5.560509 42.85156 -26.2357 0.1324219 -31.7962 

6 50 324.0283 6.177655 42.79476 -26.8529 0.1320711 -33.0305 

7 60 324.4583 6.794802 42.73804 -27.4700 0.1317212 -34.2648 

8 70 324.8890 7.411948 42.68139 -28.0872 0.1313722 -35.4991 

9 80 325.3202 8.029095 42.62482 -28.7043 0.1310242 -36.7334 

10 90 325.7519 8.646242 42.56832 -29.3215 0.1306771 -37.9677 

11 100 326.1843 9.263388 42.51190 -29.9386 0.1303309 -39.2020 
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12 110 326.6172 9.880535 42.45555 -30.5558 0.1299856 -40.4363 

13 120 327.0507 10.49768 42.39928 -31.1729 0.1296413 -41.6706 

14 130 327.4848 11.11483 42.34308 -31.7900 0.1292979 -42.9049 

 
α/α 

 

x 
(km) 

Itrav(x) 
(Amps) 

φItrav(x) 
(°) 

Irefr(x) 
(Amps) 

φIrefr(x) 
(°) 

 
ρI(x) 

 

φρI(x) 
(°) 

14 130 327.4848 11.11483 42.34308 -31.7900 0.1292979 -42.9049 

15 140 327.9194 11.73197 42.28695 -32.4072 0.1289553 -44.1392 

16 150 328.3546 12.34912 42.23090 -33.0243 0.1286137 -45.3735 

17 160 328.7904 12.96627 42.17493 -33.6415 0.1282730 -46.6078 

18 170 329.2268 13.58341 42.11903 -34.2586 0.1279332 -47.8421 

19 180 329.6638 14.20056 42.06320 -34.8758 0.1275942 -49.0763 

20 190 330.1013 14.81771 42.00745 -35.4929 0.1272562 -50.3106 

21 200 330.5394 15.43485 41.95177 -36.1101 0.1269191 -51.5449 

22 210 330.9781 16.05200 41.89616 -36.7272 0.1265829 -52.7792 

23 220 331.4174 16.66915 41.84063 -37.3444 0.1262475 -54.0135 

24 230 331.8573 17.28629 41.78517 -37.9615 0.1259131 -55.2478 

25 240 332.2977 17.90344 41.72979 -38.5787 0.1255795 -56.4821 

26 250 332.7388 18.52059 41.67447 -39.1958 0.1252468 -57.7164 

27 260 333.1804 19.13773 41.61924 -39.8130 0.1249150 -58.9507 

28 270 333.6226 19.75488 41.56407 -40.4301 0.1245841 -60.1850 

29 280 334.0654 20.37203 41.50898 -41.0472 0.1242541 -61.4193 

30 290 334.5088 20.98917 41.45396 -41.6644 0.1239249 -62.6536 

31 300 334.9527 21.60632 41.39901 -42.2815 0.1235966 -63.8879 

32 310 335.3973 22.22347 41.34414 -42.8987 0.1232692 -65.1222 

33 320 335.8424 22.84061 41.28934 -43.5158 0.1229426 -66.3564 

34 330 336.2882 23.45776 41.23461 -44.1330 0.1226169 -67.5907 

35 340 336.7345 24.07491 41.17996 -44.7501 0.1222921 -68.8250 

36 350 337.1814 24.69205 41.12538 -45.3673 0.1219681 -70.0593 

37 360 337.6290 25.30920 41.07086 -45.9844 0.1216450 -71.2936 
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Table 1.  Calculation results of current travelling and refracted waves 

      The graphical presentations of results obtained in table 1 are given in graphs 1 to 3. 

 

      

Graph 1.  Magnitude (intensity) and phase (angle) of current travelling wave from the        

                 beginning towards the end of line ie. the direction the travelling wave moves 

                 (direction right to left of electric power transmission line of figure 1) 
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Graph 2. Magnitude (intensity) and phase (angle) of current refracted wave from the end  

                 towards the beginning of line ie. the direction the refracted wave moves (direction                         

                 opposite to that of graph 1 ie. left to right of electric power transmission line of figure 1) 

 

 

       

 

 

Graph 3.  Magnitude and phase (angle) of current refraction co-efficient from the end where the    

                  refraction occurs towards the beginning of line (direction opposite to that of graph 1  

                  ie. left to right of electric power transmission line of figure 1) 

 

 

4. Discussion 

      The curves of graphs 1, 2 and 3 may appear common but they are not. Some of them may look 

straight lines or almost straight lines but they are not. The above quantities have an exponential 

behaviour as someone can verify from the respective equations in section 2. Their graphical 

representations depend on the values of their exponential constant factors (α and β). If their values 

are small and as variable x increases, the values αx and βx do not change enough in order their 

exponential behaviour to appear on the graphs. This is the reason they seem to be straight or 

almost straight lines.  

       The above explanation is given regarding their form. Regarding now their variation, the 

following reasoning is developed. 
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     On one hand, the terms (VR/zC+IR) and (VR/zC-IR) are constant complex numbers since VR, IR 

and zC are constant complex numbers. That implies that they have a constant magnitude and a 

constant phase. 

     On the other hand, the terms eγx and e-γx vary with distance x from the end of power 

transmission line. 

     The term eγx can be written as e(α+jβ)x = eαx ejβx = eαx[cos(βx) + j sin(βx)] 

     The values of α and β are real positive numbers for a typical real power transmission line. This 

will be understood from the following analysis. 

     The eαx is the magnitude of the above term while the ejβx is the phase (angle) of the above term. 

     The term eαx increases as x increases i.e. the magnitude of current travelling wave increases as 

we approach the beginning of line. In other words, the magnitude (intensity) of current travelling 

wave (eqn 7) diminishes as the wave travels from the beginning of line (where the voltage is 

applied and the current travelling wave starts) to the end of line as one expects in real world (the 

intensity of signal diminishes as it moves away from source). 

     The term βx similarly increases as x increases. With similar as above reasoning, the term βx i.e. 

the phase of current travelling wave (eqn 7) diminishes as the wave travels from the beginning of 

line and moves to the end of line. 

     Similarly, the term e-γx can be written as e-(α+jβ)x = e-αx e-jβx = e-αx[cos(-βx) + j sin(-βx)] 

     With similar as above reasoning, the term e-αx decreases as x increases. In other words, the 

magnitude (intensity) of current refracted wave (eqn 8) decreases as the wave moves from the end 

where the refraction occurs towards the beginning of line as one expects. It is really the part of 

current travelling wave that arrives at the end of line and refracts travelling in the opposite 

direction of line. This is implied by the negative value of -γx. The opposite flow of current is 

indicated by the symbol minus (-) of equation (8). 

     Additionally, the term -βx decreases as x increases i.e. the phase (angle) of current refracted 

wave (eqn 8) decreases as the wave moves from the end towards the beginning of line. 

     Using similar thinking, the term e-2γx of equation (9) regarding the current refraction co-

efficient can be written as follows : 

          e-2(α+jβ)x = e-2αx e-j2βx = e-2αx[cos(-2βx) + j sin(-2βx)] 

     Thus, using similar as above reasoning, both the magnitude and the phase angle of the current 

refraction co-efficient decrease as we move from the end (where the refraction occurs) towards the 

beginning of line as one expects. 

 

5. Conclusions 
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      Studying and analyzing the results presented in table 1 and their graphs 1 to 3 of section 3, we 

can observe and conclude the following: 

1) the magnitude of current travelling wave decreases as the wave travels from the beginning 

towards the end of line ie. along the direction the current travelling wave moves 

2) the phase (angle) of current travelling wave decreases as the wave travels from the beginning 

towards the end of line ie. along the direction the current travelling wave moves 

3) the magnitude of current refracted wave decreases as the wave moves from the end towards 

the beginning of line ie. along the direction the current refracted wave moves 

4) the phase (angle) of current refracted wave decreases as the wave moves from the end 

towards the beginning of line ie. along the direction the current refracted wave moves 

5) the magnitude of current refraction co-efficient decreases from the end of line where the 

refraction occurs towards the beginning of line 

6) the phase (angle) of current refraction co-efficient decreases from the end of line where the 

refraction occurs towards the beginning of line  

      Then, we can conclude that the above observations verify the analysis and discussion 

developed in section 4 of the paper. For better understanding of electric power transmission line 

current as a wave, we propose to study it using cartesian co-ordinates. This will be the subject of a 

future paper. 
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